暖通空调>期刊目次>2020年>第11期

某流量控制阀冷水系统特性试验研究*

Experimental study on characteristics of a flow control valve in chilled water system

宋伟[1] 杨家明[1] 张华北[2] 郭建良[3]
[1]北方工业大学 [2]江苏盛世节能科技有限公司 [3]同能创达科技(北京)有限公司

摘要:

为解决低负荷下冷水流量过大导致冷水泵能耗较大的问题,将一种新的控制策略应用于流量控制阀。搭建了模拟试验台,对空调冷水系统不同风量和不同供水温度下的阀门开度、冷水流量、供回水温差和冷水泵功率进行了比较,验证了该控制阀的控制特性及节能效果。结果显示:控制阀控制回水温度的效果较好,且当房间负荷小于风机盘管最大供冷量时,控制阀能够有效调节冷水流量,提高供回水温差并降低冷水泵功耗;当供水温度为7 ℃,风机盘管在低(325 m3/h)、中(500 m3/h)、高(600 m3/h)挡风量下,平均供回水温差分别为4.79、4.39、4.97 ℃,与使用通断型两通阀相比,平均冷水流量分别降低47.71%、39.07%、31.28%,冷水泵能耗分别降低12.20%、11.31%、10.66%;中挡风量下,供水温度为7、8、9 ℃时,平均供回水温差分别为4.39、3.56、3.33 ℃,与使用通断型两通阀相比,平均冷水流量分别降低39.07%、11.35%、18.21%,冷水泵能耗分别降低11.31%、5.09%、7.78%。

关键词:冷水系统,流量控制阀,冷水泵能耗,冷水流量,供回水温差,节能

Abstract:

 In order to solve the high energy consumption problem of chilled water pump caused by excessive flow rate of chilled water at low load, proposes a new control strategy for flow control valves. Sets up a simulation test bench, compares the valve opening, chilled water flow rate, temperature difference between supply and return water and chilled water pump power of air conditioning chilled water system at different air rates and water supply temperatures. Verifies the control characteristics and energy saving effect of this control valve. The results show that the valve controls the return water temperature better, and when the room load is less than the maximum cooling capacity of the fan coil unit (FCU), the control valve can effectively adjust the chilled water flow rate, improve the temperature difference between supply and return water, and reduce the power consumption of chilled water pump. When the supply water temperature is 7 ℃, the average temperature difference of supply and return water is 4.79 ℃, 4.39 ℃ and 4.97 ℃ at low (325 m3/h), medium (500 m3/h) and high (600 m3/h) air rates, respectively. Compared with the on-off valve in same conditions, average chilled water flow rate decreases by 47.71%, 39.07% and 31.28%, respectively, and the energy consumption of chilled water pump decreases by 12.20%, 11.31% and 10.66%, respectively. When the air rate is at medium and the temperature of supply water is 7 ℃, 8 ℃ and 9 ℃, the average temperature difference of supply and return water is 4.39  ℃, 3.56 ℃ and 3.33  ℃, respectively. Compared with the on-off valve, the average chilled water flow decreases by 39.07%, 11.35% and 18.21%, respectively, and the energy consumption of chilled water pump decreases by 11.31%, 5.09% and 7.78%, respectively.

Keywords:chilled water system, flow control valve, energy consumption of chilled water pump, chilled water flow rate, supply and return water temperature difference, energy saving

    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!