暖通空调>期刊目次>2020年>第7期

基于人员位置大数据的建筑人员作息模式研究*

Typical occupancy profiles in buildings based on big data of mobile positioning

康旭源[1] 燕达[1] 孙红三[1] 晋远[1] 许鹏[2]
[1]清华大学 [2]同济大学

摘要:

建筑中的人行为对建筑能耗具有重要的影响,建筑的人员作息是建筑能耗模拟的重要输入参数。然而,当前获取建筑人员作息的主要方法,如红外传感法和人员计数法等,存在精度较低、有系统误差或耗时耗力等问题,在实际工程中不能很好地推广应用。随着社交媒体软件的普及,其中的人员定位信息可以用于反映建筑人员作息。通过聚类分析的方法得到了典型的人员逐日及逐周的作息,并在此基础上提出了一系列分别反映人员逐日和逐周作息特征的描述性指标。以北京某医院建筑的人员作息为例进行了分析,并进一步通过对比发现,基于人员位置大数据的人员作息与能耗标准中的人员作息具有十分显著的差异,前者可以更客观地反映建筑人员在室特征。

关键词:人员位置,大数据,人员作息,聚类分析,建筑能耗

Abstract:

Occupant behavior in buildings has significant impacts on building energy consumption. Occupancy profiles are important input parameters for building consumption simulation. Current methods to obtain the occupancy profiles, such as infrared sensing methods and manual counting methods, have low accuracy and systematic error, and are often time-consuming and labor-consuming, which may not be widely used in real projects. With the advances of social media software, the mobile positioning data can reflect building occupancy schedule. Based on the cluster analysis, this research proposes a series of descriptive indexes reflecting the characteristics of daily and weekly profiles. Taking the occupancy profiles of a hospital in Beijing as a case study, this research discovers that the occupancy schedules based on mobile positioning data have significant difference from those in energy codes. The former can reflect occupancy characteristics of buildings more objectively.

Keywords:mobilepositioning,bigdata,occupancyschedule,clusteranalysis,buildingenergyconsumption

    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!