暖通空调>期刊目次>2020年>第4期

基于贝叶斯网络的变风量末端故障诊断方法*

Fault diagnosis method of variable air volume terminals based on Bayesian network

李以通[1] 李铮伟[2] 杨光[2] 周立宁[1] 付 强[1] 贾晓晴[1] 丁宏研[1]
[1]中国建筑科学研究院有限公司 [2]同济大学

摘要:

针对压力无关再热型变风量末端的15种典型故障,提出了一种基于贝叶斯网络的故障诊断方法。根据某建筑实际运行系统建立了Dymola仿真模型,并基于模拟故障数据对所提出的诊断方法进行了验证。结果表明,该方法对于绝大多数故障都可以成功检测并分离,有着较高的准确性和可靠性,并且可较好地应对实际工程中存在的数据问题,将实时故障诊断的应用场景进一步推广。

关键词:故障诊断,贝叶斯网络,压力无关再热型变风量末端,诊断准确度,检测准确度

Abstract:

Aiming at 15 typical faults of the pressure independent variable air volume (VAV) terminal with reheat coil, proposes a Bayesian network-based fault diagnosis method (FDD). Establishes a Dymola simulation model based on an actual VAV system, and verifies the performance of the proposed method based on simulated fault data. The results show that this method performs well at: (1) detecting and isolating most faults with high accuracy and reliability, (2) dealing with the data problems existing in actual engineering, (3) further popularizing the application of real-time fault diagnosis.

Keywords:faultdiagnosis,Bayesiannetwork,pressureindependentVAVterminalwithreheatcoil,diagnosticaccuracy,detectionaccuracy

    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!