暖通空调>期刊目次>2011年>第12期

基于BP神经网络的地板辐射供暖系统逐时负荷预测

Hourly heating load prediction of radiant floor heating systems based on BP neural network

李祥立,王仁瑾,端木琳,王振江
大连理工大学

摘要:

采用BP神经网络,可利用较少的输入参数建立地板辐射供暖系统热负荷预测模型,以大连市某超低能耗建筑为实测对象,根据实测的供暖期逐时热负荷数据建立了BP神经网络热负荷预测模型,并进行了改进。结果表明,采用基于多项式拟合改进的神经网络预测模型能够精确地预测一个单元未来24 h的逐时热负荷,预测误差为5%左右。

关键词:负荷预测,BP神经网络,地板辐射供暖系统

Abstract:

BP neural network is used to predict hourly heating load and it requires fewer parameters for establishing the model. With the field survey data in a lower energy consuming building in Dalian city, establishes a prediction model of hourly heating load based on BP neural network and makes some improvement on it. The results show that the improved BP neural network prediction model based on polynomial fitting can accurately predict hourly heating load for one unit in the next 24 hours, and the prediction error is about 5%.

Keywords:load prediction, BP neural network, radiant floor heating system

    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!