暖通空调>期刊目次>2022年>第11期

基于ARIMA-SVM模型的博物馆经书库TVOC浓度预测

Prediction of TVOC concentration in museum scripture libraries based on ARIMA-SVM model

张舸[1] 白姣[1] 周志鹏[1] 成倩[2]
[1]北京科技大学 [2]国家文物局考古研究中心

摘要:

为满足文物预防性保护需求,分别用ARIMA和ARIMA-SVM模型对某博物馆经书库TVOC浓度进行了预测研究。结果表明:ARIMA-SVM模型的精度高,能够较好地预测TVOC浓度序列趋势;基于ARIMA-SVM组合预测方法的平均绝对误差(MAF)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别为0.001 5×10-6、0.000 5和0.005 5×10-6,印证了该模型预测博物馆TVOC浓度的可行性,可以为经书库环境调控提供科学依据。

关键词:博物馆;经书库;预防性保护;TVOC浓度;ARIMA-SVM模型;时间序列预测;模型评价

Abstract:

In order to meet the need of preventive protection of cultural relics, the TVOC concentration of a museums scripture library is predicted and studied by the ARIMA model and the ARIMA-SVM model, respectively. The prediction results show that the ARIMA-SVM model has high accuracy and can better predict the trend of TVOC concentration series. The MAE, MAPE and RMSE based on the ARIMA-SVM combined forecasting method are 0.001 5×10-6, 0.000 5 and 0.005 5×10-6, respectively. This confirms the feasibility of the ARIMA-SVM model in the prediction of the TVOC concentration of the museum, which can provide a scientific basis for the environmental regulation of the scripture library.

Keywords:museum; scripture library; preventive protection; TVOC concentration; ARIMA-SVM combined model; time series forecasting; model evaluation

    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!