暖通空调>期刊目次>2021年>第4期

基于BP神经网络的横流式蒸发冷凝器鼓泡式板片传热性能预测

Prediction of heat transfer performance of bubbling plates in cross-flow evaporative condensers based on BP neural network

席鹏飞[1] 章立新[1] 张坤龙 陈权[1] 周庆权[1] 高明[1] 刘婧楠[1] 陈永保[1] 潘旭光[2] 陈婷婷[2]
[1]上海理工大学 [1]上海市动力工程多相流动与传热重点实验室 [2]浙江三新科技有限公司

摘要:

为预测蒸发冷凝器中鼓泡式板片空气侧的复合换热系数,搭建了一个由2块鼓泡式板片组成的传热性能测试实验系统,在一定工况下通过调节电加热功率以保持板片壁温为60 ℃。实验期间环境条件变化范围为:大气压98.899.3 kPa,进口空气干球温度2637 ℃,进口空气湿球温度2332 ℃。可调节参数的范围为:喷淋水流量100400 L/h,截面风速1.03.7 m/s,板片间距2030 mm。计算了板片与空气间的复合换热系数。利用3BP神经网络处理实验数据,输入参数为进口空气干球温度和湿球温度、喷淋水流量、截面风速及板片间距,输出参数为板片与空气间的复合换热系数。预测结果的相关系数为0.999 2,平均相对误差为0.355 94%,均方根误差为0.508 01 W/(m2·K),表明BP神经网络对蒸发冷凝器中鼓泡式板片空气侧复合换热系数的预测有较高的准确度。

关键词:蒸发冷凝器,鼓泡式板片,BP神经网络,传热性能,复合换热系数

Abstract:

In order to predict the composite heat transfer coefficient of bubbling plates on the air side of evaporative condensers, establishes a heat transfer performance test system consisting of two bubbling plates, and keeps the wall temperature of the plates at 60 by adjusting the electric heating power under certain working conditions. During the experiment, the environmental conditions vary from 98.8 to 99.3 kPa in atmospheric pressure, 26 to 37 in inlet air dry bulb temperature and 23 to 32 in inlet air wet bulb temperature. The range of adjustable parameters is as follows: spray water flow rate 100 to 400 L/h, cross-section wind speed 1.0 to 3.7 m/s, plate spacing 20 to 30 mm. Calculates the composite heat transfer coefficient between plate and air. Processes the experimental data by three-layer BP neural network. The input parameters are inlet air dry and wet bulb temperatures, spray water flow rate, cross-section wind speed and plate spacing, and the output parameter is the composite heat transfer coefficient between plate and air. The correlation coefficient of prediction results is 0.999 2, the average relative error is 0.355 94%, and the root mean square error is 0.508 01 W/(m2·K), which indicates that the BP neural network has high accuracy in predicting the composite heat transfer coefficient of bubbling plate air side in evaporative condensers.

Keywords:evaporative condenser,bubbling plate,BP neural network,heat transfer performance, composite heat transfer coefficient

    你还没注册?或者没有登录?这篇期刊要求至少是本站的注册会员才能阅读!

    如果你还没注册,请赶紧点此注册吧!

    如果你已经注册但还没登录,请赶紧点此登录吧!