

辐射顶板换热性能测试 标准的比较

同济大学 杨 瑞☆ 周 翔△ 袁永莉 张淇淇

摘要 详细比较了 ASHRAE 138-2013, EN 14240 和 JG/T 403—2013 三种辐射板换热性能测试标准,并分析了不同标准在实际应用中的优缺点与难点,提出了将标准中的内热源法与外热源法相结合的测试形式。针对国内辐射板测试,提出了一些建议。

关键词 辐射顶板 测试 标准 换热性能 内热源法 外热源法

Comparison among three testing standards for thermal performance of radiant ceiling panel

By Yang Rui★, Zhou Xiang, Yuan Yongli and Zhang Qiqi

Abstract Compares the testing regulations for thermal performance of radiant ceiling panel in three standards of ASHRAE 138-2013, EN 14240 and JG/T 403—2013 in detail. Analyses the advantages, disadvantages and the difficulties of three standards in real application. Proposes the combination type of the internal and external heat source methods, and presents some suggestions for carrying out relevant performance tests in China.

Keywords radiant ceiling panel, test, standard, heat transfer performance, internal heat source method, external heat source method

★ Tongji University, Shanghai, China

0 引言

辐射吊顶空调系统是一种起源于欧洲、近年来在我国发展较迅速的新型空调系统,它具有节能、舒适性强、转移峰值耗电、提高电网效率、减少环境污染及节省建筑空间等优点。随着辐射空调与送风技术相结合从一定程度上解决辐射板冷量与冷凝水问题后^[1],辐射吊顶空调得以大力推广。

辐射供冷空调系统设计和设备选型过程中,末端的热工性能是重要参数。国外研究方面,针对辐射顶板制冷性能的测试和制冷量的计算主要有美国 ASHRAE 138-2013 标准,德国 EN 14240 标准、EN 1264 标准,英国 BS EN 1264 标准,日本BLT HS标准中规定的方法等[2];国内研究方面,JG/T 403—2013《辐射供冷及供暖装置热性能测试方法》标准为如何得出辐射供冷/供暖装置详实有效的热性能数据提供了依据。在JG/T 403—2013 发布之前,国内对辐射吊顶的研究多集中于对国外标准的分析和换热性能测试上:杨芳详细分析了金属辐射冷却顶板的发展历史、热工特性及换

热量计算标准与方法等^[3]; 史德福等人对辐射板测试方法 EN 14240 标准, ASHRAE 138 标准中的制冷量计算方法作了介绍比较, 并在根据 EN 14240 标准搭建的实验台上对金属辐射顶板进行了测试及分析^[4]; 于国清等人参照 EN 14240 标准搭建了一个辐射换热性能测试实验台, 并对并联毛细管型与串联盘管型两种形式辐射吊顶板的换热性能进行了实验研究^[5]。

本文通过比较德国 EN 14240 标准、美国 ASHRAE 138 标准和 JG/T 403—2013 标准提出的 辐射顶板换热性能的测试和计算方法,分析不同标准下实验室搭建与控制过程的难点,结合分析提出 针对国内当前辐射供暖、供冷装置性能测试的建议。

⊕☆ 杨瑞,男,1990年3月生,在读硕士研究生

△ 周翔(通信作者)

200092 上海市杨浦区同济大学机械与能源工程学院暖通空 调研究所

(0) 18818203820

E-mail: zhouxiang@tongji. edu. cn

收稿日期:2014-06-06 修回日期:2014-07-10

1 辐射板制冷量、制热量测试标准比较

3 种标准中针对辐射顶板制冷性能的测试有详细的说明和规定,如测试实验室规模、辐射板安装、性能测试方法、步骤、仪器精度、数据结果分析

处理等。EN 14240 标准并没有涉及辐射板供热量的测试规定,ASHRAE 138 标准与 JG/T 403 标准则针对制冷量和制热量测试都有详细规定。3 种测试标准的比较如表 1 所示[7-10]。

表 1 测试标准比较

	EN 14240	ASHRAE 138-2013	JG/T 403—2013
 测试量	供冷量	供冷量、供热量	
例以里 基准量	黑球温度 黑球温度	作业温度	(内) 里、供於里 空气温度
	,		
测试范围 (工况)	黑球温度 22~27 ℃	室内干球温度:制冷(24±2)℃,制热 (20±3)℃;相对湿度:(35±15)%	空气温度:制冷 26 ℃,制热 18 ℃;进口水温:制冷 16 ℃,制热 40 ℃;出口水温:制冷 19 ℃,制热 35 ℃
原理	使用黑球温度计测量室内基准点温度,稳态条件下测量获得制冷介质(如水)流速和温升	维持测试舱内各壁面温度、空气干球温度、相对湿度恒定,通过测试流量与 进出口温差计算制冷、制热量	以水为冷热媒的,通过测量流过测试样 品的质量流量和进出口焓差确定;发 热电缆、电热膜通过电功率计测试
实验室尺寸	面积(10~21)m ² ,高(2.7~3)m,宽 长比≥0.5	4 m×4 m×3 m<长×宽×高<6 m×6 m×4.5 m,宽长比 0.9~1.0	$(4\pm 0.2) \text{ m} \times (4\pm 0.2) \text{ m} \times (2.8\pm 0.2) \text{ m}$
辐射板安装	辐射板面积占实验室总面积 70%以上,与顶板间距<0.3 m	与顶板间距 0.5 m 或距地面 2.44 m	面积大于等于安装壁面面积的 20%,边 长≥1 m
围护结构 要求	围护结构平均热流<0.4 W/m²,内表面及模拟热源表面发射率≥0.9	外墙及地板热阻≥2 m²・K/W,天花板 热阻≥3 m²・K/W,内墙热阻≥1.5 m²・K/W。内表面及辐射板表面发 射率≥0.9	各表面热阻≥1.73 m²·K/W,各表面 热阻偏差≤20%,表面发射率≥0.9
测试内容	黑球温度,室内干球温度,内壁面表面温度,辐射板进出水流量、温度, 模拟热源功率	室内空气干球温度,内壁面温度,气流 速度,气压,含湿量,辐射板进出口水 温及体积流量	空气温度,内壁面与辐射板表面温度, 相对湿度,室内大气压,辐射板进出 口水温与质量流量
测试精度	黑球温度、室内干球温度、内壁面表面温度、水温:±0.1 K;水流量:±0.5%;模拟热源功率:±1%	室内空气干球温度、内表面温度:±0.2 K;含湿量:±2%;气流速度:±0.05 m/s;气压:±0.5 kPa;流体水温: ±0.05 K;流体体积流量:±0.1%	空气温度、进出口水温: \pm 0. 1 °C; 壁面温度: \pm 0. 2 °C; 大气压力: \pm 0. 3 kPa; 质量流量: \pm 0. 02%; 外接供电系统: 三级
制冷(热) 量计算	$q = c_{ ho}q_{ m m}(heta_{ m w2} - heta_{ m w1})/A_{ m a}$	$q = \sum_{j=1}^m \lceil ho V c_p (t_{ m r} - t_{ m i}) floor_j / \sum_{j=1}^m A_{ m pj}$	$Q_{\rm c} = G_{\rm m}(h_2 - h_1), Q_{\rm h} = G_{\rm m}(h_1 - h_2)$
结果曲线	辐射制冷量与黑球温度和辐射板内 流体平均温度差值关系	辐射制冷量、制热量与作业温度与流体 平均温度、空气干球温度与流体平均 温度、空气干球温度与辐射板表面平 均温度3种温差的指数关系	辐射制冷量、制热量与过余温度的指数 关系
特点	采用内热源法模拟人体产热,通过安装一定规格的模拟发热小人来平衡样品的冷却效能。测试舱内表面温度可控且穿过测试舱6个壁面的热流应达到可忽略的程度	用测试舱的 5 个壁面可控温平板分别模拟外墙、内墙和地板,综合考虑了壁面温度和空气温度对人体热舒适性的影响,反映了实际情况下辐射和对流换热的共同作用	增加了对发热电缆和电热膜供暖装置的测试方法,提出当测试压力与标准压力偏离时需进行修正
3 种标准测试原理均是热平衡法。德国 EN 气温度作为室内换热计算参数。ASHRAE 138 标			

3 种标准测试原理均是热平衡法。德国 EN 14240 标准采用内热源法模拟人体产热,仅以模拟小人来平衡平板的冷却效能,较容易达到稳态条件。ASHRAE 138 和 JG/T 403 标准用测试舱的 5 个可控温壁面分别模拟内墙和地板,可控温壁面均应独立控制温度和流量。ASHRAE 标准提出当单次测试辐射板数量多于 1 时,每个测试平板也应独立控制温度和流量,这使得测试装置较为复杂。

针对辐射板换热量计算,ASHRAE 手册中计算采用综合换热量代替对流换热与辐射换热部分,并用室内非加热表面面积加权平均温度 AUST (area-weighted average temperature)作为室内换热计算参数,相对于 ASHRAE 138 标准,欧洲的计算标准则将对流换热与辐射换热综合起来,以空

气温度作为室内换热计算参数。ASHRAE 138 标准主要考虑围护结构传热对负荷的影响, EN 14240 标准则主要考虑室内人员产热负荷。

比较 3 种标准,最主要的区别在于测试时如何维持室内与壁面温度的稳定,归纳来说 EN 14240标准采用室内模拟热源的内热源法,JG/T 403 与ASHRAE 138标准采用壁面铺设"冷墙"的外热源法。采用内热源法时仅通过辐射方式精调壁面温度,只适用于测试制冷量,且需要对壁面作良好的保温。采用外热源法时能够对壁面温度进行调节,因此既能测试辐射板制热量,又能测试制冷量,但是考虑到壁面及保温材料的热惯性、供水管路沿程热损失,当改变壁面辐射板供水温度时,室内空气温度与壁面温度再次稳定需要很长时间,实验控制

精度较差。此外不同热源形式也会导致舱体内作业温度、黑球温度的不同,选择不同的热源形式和基准温度会使得同一被测末端的热工性能曲线存在差别[9]。

2 标准实验室搭建与控制难点

由于不同标准提出的相关模拟负荷形式不同, 实验台搭建方法及复杂程度也不相同,实验室搭建 及控制难点主要集中在以下几方面。

2.1 围护结构

首先针对 EN 14240 标准,在测试时由室内模拟热源提供热负荷,围护结构视为绝热边界,标准对围护结构保温要求较高。内壁面温度需可控,标准推荐为充满水的金属板(水温可以调节,水流量大,且进出口温差小于1°C)或者循环可控的风场。JG/T 403 标准中测试小室还是采用原有的供暖散热器散热量测定中给出的小室要求,只提出夹层可使用控温送回风系统的循环风或者壁面水系统控制壁面温度。ASHRAE 138 标准要求外壁面保温,除天花板外的 5 个内壁面均要作为可控温面板,可控温壁面均应独立控制温度和流量,面板除了要满足发射率大于 0.9 的要求外,与壁面间还要留有一定距离以补偿热膨胀。

2.2 参数控制

参照表 1,为保证测试结果的准确性,3 种标准对不同温湿度、水流量等参数的控制精度要求十分高。测试条件稳定的判断标准也十分苛刻,EN 14240标准方法壁面温度控制较为简单,可以通过模拟热源外加变压器的方式,通过调整电压形式来调整模拟热源的发热量以精调壁面温度与空气温度,对于 ASHRAE 138标准与 JG/T 403标准中的外墙法来说,由于管道热损失、温度分布的不均匀性、供水流量大小等一系列问题,精确控制壁面温度与室内温度实现起来较为困难。

吊顶辐射板需单独设置一套供水装置,JG/T 403 标准提出水的质量流量宜采用称重法测量并有相应要求,当流量较大采用流量计法测量时,误差在 0.5%以内,与 EN 14240 标准提出辐射板供水水流量测量误差相同,ASHRAE 138 标准规定流体水温误差为±0.05 ℃,流体体积流量误差在 0.1%以内,不同标准对供水控制精度要求都较高,在实际实验过程中,考虑到仪器控制精度、辐射板供水管路在机组出水口与辐射板进水口之间由于

管线长、保温不严等原因引起热量损失等,管道温度误差难以保证。

2.3 吊顶辐射板铺设与安装

国家标准中规定测试样品投影面积不小于安装面面积的 20%, EN 14240 标准中规定辐射板面积需占实验室面积 70%以上, ASHRAE 138 标准中虽然对辐射板满布面积没有具体规定,但对辐射板与顶板间距或地面间距有详细的要求,标准对辐射板与天花板之间铺设形式提出固定、悬挂、安装在不同位置 3 种方法,一般推荐悬挂形式。在笔者实验过程中针对实验室已建成的情况下安装建议设置支架吊装,以实验室尺寸 4.2 m×3.6 m×2.6 m为例, 拟制作尺寸为 4.0 m×3.2 m×2.5 m的支架,支架材料为角钢与木板,支架可灵活拆卸,小支架横向固定于大支架上,安装时辐射模块吊装在小支架上,如图 1 所示。

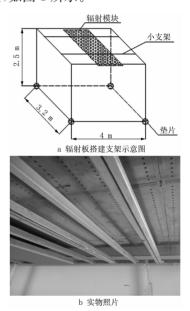


图 1 辐射板搭建支撑架示意与实物图

此外,为了与实际使用过程保持一致,从而为设计提供较准确的数据,安装时需对辐射板上部作良好保温,悬挂辐射板后再在辐射板表面铺设石膏板,部分毛细管安装时更为复杂,需在上部作良好保温,保温层下方贴石膏板层,石膏板表面涂界面剂,在界面剂层下铺设带固定网的毛细管席,最后表面抹灰。

3 内热源与外热源结合

当前国内相关辐射板换热量性能测试试验仅 参照某一标准,因此搭建的实验台或者只能测试制 热量,或者能够测试制冷量与制热量但调节精度不够,存在测试结果不被认可的可能。此外辐射板搭建与拆卸过程均较为麻烦,为满足一次施工能同时满足制冷量及制热量的测试要求,实现壁温、室温、供水温度、水量可控及对相关参数精调的要求,笔者考虑将内热源法与外热源法相结合,依靠实验舱外壁面铺设的辐射板带走室内负荷,同时室内增加发热体对室内与壁面温度进行微调,克服墙体热惯性。实验室搭建时仅需要在JG/T 403或ASHRAE 138标准基础上稍作改动,增加室内模拟热源,这样既能测试制冷量与制热量,又能对室内与壁面温度进行微调,与采用单一标准搭建、仪表精度相同的实验室相比,能提高测试精度。内外热源结合时模拟热源与室内测点布置示意见图 2。

图 2 内外热源结合时模拟热源与室内测点布置

综合 2 种标准,测试辐射板换热量时,首先利用风系统将室内温湿度处理到设定值后关闭送风系统,实验过程通过实验室外壁面辐射板与夹层空调机组送风带走室内负荷,初步维持壁面温度与空气温度稳定。通过 12 个模拟热源对壁面温度精调,每个模拟热源有 3 个 60 W 的白炽灯泡,总热量为2 160 W。模拟热源尺寸参照 EN 14240 标准。表面喷涂白色漆使热源表面发射率大于 0.9。

实验室搭建时参照标准,围护结构采用壁面冷墙法和循环可控风流联合控制,辐射板进水由单独的冷热源系统提供,冷热源系统设计可采用包括恒温水箱、水泵、电加热器、风冷冷水机组的组合方式。其中恒温水箱冷热水由空气源热泵和水箱内电加热器初步调节水温,在出水管道上设置由 PID 控制的电加热器用来精调辐射板进水温度。保证整个实验室系统的内室温度波动控制在土0.5℃,供水温度波动控制在土0.2℃,水流量波动控制在土0.5%之间。

4 结论

4.1 通过比较美国 ASHRAE 138、德国 EN

14240 和 JG/T 403 三个辐射顶板换热量实验测试标准可以看出, ASHRAE 138 和 JG/T 403 标准主要考虑围护结构传热对热负荷的影响, EN 14240标准则主要考虑室内人员产热负荷的影响。3 种标准中分别提出内热源法与外热源法, 也各有优缺点。

- 4.2 3种标准对施工方式、测试舱参数精度控制等要求严格,不同标准实验装置复杂程度与施工方式也不同。对于已建成实验室,测试时辐射顶板面积占实验室总面积比例要求较高且考虑到辐射板测试时更换频繁,笔者提出了一种室内支架吊装的安装方法。
- 4.3 针对当前测试时内热源法与外热源法二选一的形式,为满足一次施工能同时满足制冷量及制热量的测试要求,实现壁温、室温、供水温度、水量可控及对相关参数精调的要求,建议实验室搭建、测试时设置冷墙加模拟热源形式,即内热源法与外热源法相结合,提高测试精度。

参考文献:

- [1] 王子介. 低温辐射供暖与辐射供冷[M]. 北京: 机械工业出版社,2004
- [2] 李爱松,路宾,李忠,等. 国外辐射供暖供冷装置性能测试相关标准比较[J]. 建筑科学,2011,27(12):10-15
- [3] 杨芳. 金属辐射冷却顶板的研究及其应用[D]. 长沙: 湖南大学,2005
- [4] 史德福,陈华,金梧凤,等. 辐射顶板供冷性能测试方法 及计算方法[J]. 建筑热能通风空调,2012,31(4):7-9
- [5] 于国清,陶勤练. 辐射吊顶换热性能的实验研究[J]. 制冷学报,2013,34(1):81-83
- [6] 高志宏,刘晓华,张伦,等. 辐射板供冷性能影响因素与计算方法[J]. 暖通空调,2011,41(1):33-36
- [7] CEN. EN 14240-2004 Ventilation for buildings chilled ceilings testing and rating [S]. Kobenhavn:
 Danish Standards Association, 2004
- [8] ASHRAE. ANSI/ASHRAE Standard 138-2013 Method of testing for rating ceiling panels for sensible heating and cooling [S]. Atlanta: ASHRAE, 2013
- [9] 中国建筑科学研究院. JG/T 403—2013 辐射供冷及供暖装置换热性能测试方法[S]. 北京:中国标准出版社,2013
- [10] 朗诗集团股份有限公司,中国建筑科学研究院. JG/T 409—2013 供冷供暖用辐射板换热器[S]. 北京:中国标准出版社,2013
- [11] 王志强,牛晓雷,田喆. 辐射供冷末端热工性能测试标准对比及讨论[J]. 暖通空调,2012,42(10):81-84