

下一代制冷剂—— 历史回顾、思考与展望*

Engineering Consultant [美国]康杰士*(著)中国建筑科学研究院 汪训昌(译)

摘要 回顾了制冷剂从早期使用至现在的进步历程,探讨了未来方向与一些候选制冷剂。根据所定义的选择标准把此历程划分为四代制冷剂。逐一用这些标准讨论了较早工质的替代,并说明了某些早期制冷剂例如那些现在所称的"天然制冷剂"重新受到关注的过程。考察了对现有国际协定相关方案的展望,其中包括了分别为防止平流层臭氧耗损与全球气候变化的蒙特利尔与京都议定书的分析。还考察了其他环境问题和更长远的国际与地区性的控制措施。这种讨论说明,如果仅仅孤立地看待各个环境问题,而不是把若干环境问题作为整体而采取综合协调的对策,可能会对环境造成无意识的破坏,这种环境破坏几乎肯定将来还需要再采取挽回措施。可以确定,一些即将出台的政策与管制条例的变化可能对下一代制冷剂的选择会有重要影响。

关键词 制冷剂 发展 环境 气候 温室效应 臭氧耗损潜能值 全球变暖潜能值

Next generation of refrigerants—historical review, considerations and outlook

Original by James M. Calm*,
Translated by Wang Xunchang

Abstract Reviews the progression of refrigerants, from early uses to the present, and then addresses future directions and candidates. Breaks the history into four refrigerant generations based on defining selection criteria. Discusses displacement of earlier working fluids, with successive criteria, and how interest in some early refrigerants re-emerged, for example renewed interest in those now identified as "natural refrigerants". Examines the outlook for current options in the contexts of existing international agreements, including the Montreal and Kyoto Protocols to avert stratospheric ozone depletion and global climate change, respectively. Also examines other environmental concerns and further and international and local control measures. The discussion illustrates how isolated attention to individual environmental issues or regulatory requirements, in contrast to coordinated responses to the several issues or regulatory together, can result in unintended environmental harm that almost certainly will require future reversals. It identifies pending policy and regulatory change that may impact the next generation of refrigerants significantly.

Keywords refrigerant, development, environment, climate, greenhouse effect, ODP, GWP

★ Engineering Consultant, USA

1 制冷剂的进步

追溯到古代,人们利用储存天然冰、水的蒸发效应及其他一些方法来制冷。17 与 18 世纪,各国众多的研究者研

* This article was originally published as; J. M. Calm, "The Next Generation of Refrigerants-Historical Review, Considerations, and Outlook," International Journal of Refrigeration, 2008 (7); 1123 — 1133, 2008, as a requested expansion and update to "The Next Generation of Refrigerants," paper ICR07—B2-534, Refrigeration Creates the Future (proceedings of the 22nd International Congress of Refrigeration, Beijing, People's Republic of China, 21 — 26 August 2007), Chinese Association of Refrigeration (CAR), Beijing, PRC, and International Institute of Refrigeration (IIR), Paris, France, 2007 Copyright © 2007 James M. Calm and 2008 Elsevier Ltd and IIR-reproduced with permission of the author

究过相变物理学,他们的一些发现奠定了人工制冷的基础。 Evans 首先提出了在密闭循环中利用一种挥发性流体把水冻结成冰的方法[1]。他描述了在真空条件下通过乙醚蒸发制冷,然后把乙醚气体用蒸气泵输送到水冷的换热器冷凝后再利用的一种制冷系统形式。虽然没有历史记录表明他制造出了工作机,但是他的构思很可能影响了 Perkins 和

⊕☆ James M. Calm

10887 Woodleaf Lane, Great Falls, VA 22066 – 3003 USA $\pm 1 (703)~636 - 9500$

E-mail; jmc@JamesMCalm.com

收稿日期:2008-12-26

Trevithick 两个人。后者在 1828 年提出了一种空气循环制冷系统形式,但他们也没有制造过一个系统。然而,Perkins 确实在 19 世纪 30 年代发明了蒸气压缩机,从而引入了一些正如我们所知的实际的制冷剂。在他的专利中描述了一种利用"可产生冷却和冷冻效应的挥发性工质,同时通过凝结过程使工质在没有废物产生的情况下运行"的循环^[2]。许多制冷专家把他的机械蒸气压缩方法这一里程碑式的贡献称为 Perkins 循环。虽然原计划采用乙醚作为制冷剂,但 最 初 的 试 验 实 际 上 采 用 了 一 种 名 为 "caoutchoucine"的生胶干馏产物,它是 Perkins 在他的印刷机业务中所采用的一种工业溶剂,在当时市场上是可以买得到的。

图 1 描述了制冷剂自其问世起所经过的四代技术进步。

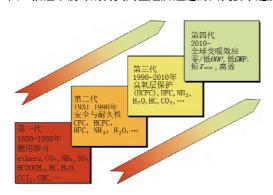


图 1 制冷剂所经过的四代进步

1.1 第一代制冷剂(以能用即可为选择标准)

1830—1930 年的 100 年里大多数普通制冷剂是一些熟悉的溶剂和其他的挥发性工质,它们组成了第一代制冷剂。第一代制冷剂实际上包括了当时凡是能工作的和可买得到的制冷剂。几乎所有这些早期制冷剂都是可燃的或有毒的,或者既可燃又有毒,某些制冷剂还极易发生化学反应。因此,事故成了家常便饭。作为一种观点,许多公司把丙烷(R290)称作"无臭、安全"而且优于氨(R717)的制冷剂加以推销[©]。一个生动的历史性广告声称丙烷"是一种中性的化合物,因此不产生腐蚀作用",并且"无毒无害和没有讨厌的气味,应该引起需求,工程师采用这种蒸气作为工质可以毫无麻烦"[©]。即使到了今天,在一些工业应用中,延续的对氨的偏爱仍超过了碳氢化合物,这表明了碳氢化合物极高的可燃性在一些大系统中仍旧是个较大问题。

在上世纪 20 年代,在考察冷水机组制冷剂的同时,出现了第一次有文献记载的对制冷剂的系统搜索,提供了能改进性能的实际设计^[3]。因在焓湿学与空气调节上有所建树而知名的 Carrier,Waterfill 研究了适用于容积式与离心(径向涡轮)式压缩机的一系列候选制冷剂,并着重研发了适用于离心式压缩机的制冷剂。他们的结论(没有分析超

临界循环)是,二氧化碳(R744)的性能可能取决于非超临界循环和其液态时的过冷量,但他们对所分析的工质给出了最低的预测性能。他们还指出,氨水(R718)对于所寻求的工况可能需要过多的离心压缩机级数,而水"给出了低的性能效率。"他们因为安全原因否定了二氧化硫(R764),因为与金属的不相容性,尤其存在水时,又否定了四氯化碳(R10)。他们对第一台离心机最终选择了二氯乙烯(dielene,商品名为达林)(1,2-dichloroethene, R1130),尽管当时为了找到二氯乙烯原始来源需要进行国际检索^[4]。1.2 第二代制冷剂(以安全与耐久性为选择标准)

为了安全与耐久,第二代制冷剂以转向为氟化合物为 鲜明标志。那时被广泛使用的甲酸甲酯(R611)与二氧化 硫(R764)因再三泄漏而推迟了用家用冰箱(domestic refrigerators)替代冰库(iceboxes)的一些早期研究。按照 "制冷行业如果希望普遍推广其应用,就需要一种新的制冷 剂"的方向,Midgley 和他的助手 Henne 与 McNary 首先搜 检了一些化学物质的性能表,以期找到具有适宜沸点的工 质。他们把这种搜检限定于那些已知性能稳定、无毒、不可 燃的化学品范围之内。所发表的文章中提到的四氟化碳 (R14)的沸点引起了大家对有机氟化物的注意,但他们正 确地觉察到四氟化碳(R14)的实际沸点要比所发表的低很 多。查阅了元素周期表之后, Midgley 立即排除了那些不 具有足够挥发性的物质。然后基于低沸点的要求,他又剔 除了那些不稳定的与有毒的化合物与惰性气体,剩下8种 元素,即:碳、氮、氧、硫、氢、氟、氯、溴[6]。在1928年头3个 工作日, Midgley 与他的同事对由这些元素组成的化合物 的可燃性与毒性进行了严密的观测。他们还注意到,当时 每一种已知的制冷剂都包含了这些元素中的7种元素,而 恰恰没有氟。他们关于氟化学制冷剂著作的首次发表,证 明了氯化烃与氟化烃组成的变化是如何影响沸点、可燃性、 毒性的[6]。

在1931年开始有了 R12的商业化生产后,接着在1932年有了 R11的生产[7-8]。氯氟烃(CFC)和后来特别是在上世纪50年代开始在住宅与小型商用空调机、热泵中应用的氢氯氟烃(HCFC)成为第二代制冷剂的主流。此时,氦作为一种在一些大型工业系统中最流行的制冷剂仍继续在使用,尤其是在食品、饮料的加工与冷藏方面。

1.3 第三代制冷剂(以臭氧层保护为选择标准)

人们对所排放的各种 CFC 物质(包括 CFC 制冷剂)与 臭氧层耗损之间关系的发现,促进了关注平流层中臭氧层 保护的第三代制冷剂的出现。维也纳公约与因而产生的蒙 特利尔议定书迫使人们放弃使用臭氧耗损物质(ODS)。但 氟化物仍是主要的关注点,同时强调 HCFC 还可短期(过 渡)使用,HFC则可在更长时间内使用。这些改变重新激 发了对一些"天然制冷剂"尤其是氨、二氧化碳、碳氢化合物 和水的关注,并促使了吸收式及其他非同类(即那些不使用

[©] Car Lighting and Power Company, 1922

氟化学品的蒸气压缩系统)制冷方法的拓展使用。一些公共的和私营的研究计划系统地考察了另外一些非氟化学品与氢氟醚(HFE)两类候选物,但没有得出什么推广方案。

一些制造商在 1989 年后期开始了第一批替代制冷剂的商品化生产,并在 10 年之内引入了大多数臭氧耗损制冷剂的替代品。一些非第 5 条款(大多数发达)国家,有时候也被称为第 2 条款国家,按照蒙特利尔议定书(1987)的要求,到 1996 年在新生产设备中淘汰了 CFC 制冷剂。第 5 条款国家到 2010 年也将如此做,某些发展中国家(如中国)将更早些。正如议定书所规定的那样,"第 5 条款"与"第 2 条款"国家的区别在于各国前期使用臭氧耗损物质的水平不同。除非受其本国自身的管制条例所限制,蒙特利尔议定书允许现有设备继续使用和维修时使用 CFC 制冷剂,直到这些设备退役报废。

HCFC 的转换也正在进行中。蒙特利尔议定书规定了 消费量(定义为生产量加进口量,减出口量和指定的销毁 量)的分阶段淘汰限期,非第5条款国家消费量1996年冻 结于最高限计算值,2004年削减为最高限计算值的65%, 到 2010 年为 25%,到 2015 年为 10%,到 2020 年为 0.5%, 至 2030 年完全淘汰[9]。各个国家采取了不同的响应步骤。 大多数中、西欧国家加速 HCFC 淘汰,而大部分其他发达 国家制订了一些限制措施,前期先淘汰喷雾剂与发泡剂(特 别是 R411b),要求到 2010 年在新设备中淘汰 R22(目前使 用最广的制冷剂),然后到 2020 年禁止所有的 HCFC 在新 设备中使用。第5条款国家的淘汰时间表是在2013年开 始冻结(基于2009—2010年度的生产与消费水平),逐渐开 始削减,到 2015 年削减到 90%,到 2020 年削减到 65%,到 2025 年削减到 32,5%,到 2030 年削减到 2,5%,至 2040 年 全部淘汰[9]。此外,对于使用 HCFC 制冷剂的现有设备, 即使在 2040 年之后,仍允许未来继续使用 HCFC 及用来 维修,直到其退役报废,除非其本国另有管制条例加以限 制[9-10]。对从第5条款国家向非第5条款国家的出口量,为 了满足更严格的非第5条款国家时间表的要求,规定了有效 的限制。为了避免区分国内产品与出口产品,以及通过共同 承担风险和分享专利成果来促进研发新技术,在第5条款国 家中某些产品的一体化替代要比所要求的时间更早些。

有三点值得注意。第一点,制冷剂在历史上只构成了总的 ODS 排放中的一小部分,而在日常使用中与制冷剂相同的大多数 CFC 和某些 HCFC,其排放量远高于制冷剂,却用在很多方面,例如作为气溶胶喷雾剂、发泡剂和溶剂。第二点,也是在重要性上至少与制冷剂的替代不相上下的一点是,为了减少可避免的制冷剂排放量,对环境问题的关注推动了设计、制造、安装、维修以及最终的处置方法上的重大改进[11]。第三点,臭氧层正在恢复,尽管南极所记录的臭氧孔洞有偶然扩大的报告[12]。全年南极臭氧孔洞的大小是由一些可变因素所造成的,像南极极地风与摆动,包

括了极地旋风,以及影响臭氧耗损效率与自然补充的冬季极端温度。国际科学评估报告证明了新的 ODS 释放量与残余的旧排放量都在下降^[12]。科学家们把图 2 中所描绘的臭氧浓度和臭氧孔洞面积的变小趋势解释为近年来趋于稳定,并从最坏的 1998 年以来开始恢复。如果以全球的平均臭氧(含量),而不是孤立的以南极旋风中的臭氧来衡量,臭氧层恢复的进程甚至更明显。

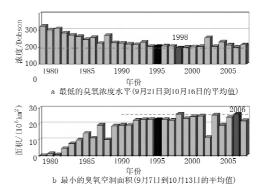
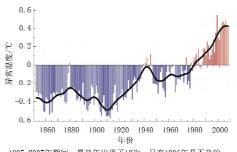



图 2 基于 NASA 数据的臭氧空洞的变化情况[13]

1998年以前, 臭氧浓度一直在下降, "臭氧空洞"(按浓度小于220 Dobson单位确定的面积)—直在增大。自1998年以来, 最小臭氧浓度与空洞面积都反映出趋于稳定或改善的趋势, 但仍具有年度差异(最显著的为2002年, 2006年的次之)。因轨道仪器故障, 图2中缺少1995年的测量数据。

虽然 ODS 排放量的增加会加剧臭氧耗损,拖延或阻碍其恢复,但更重要的是大大地限制了加速臭氧层恢复的可能性,考虑到以前所释放的 CFC、哈龙等等这些具有很长大气寿命的 ODS 的巨大影响,尤其如此。这一点暗示着,为了避免由于大气累积效应的重演导致未来可能引起的一些新问题,在选择替代物时要重点考虑大气寿命(zam)问题。虽然希望寿命要短些(理想情况要短于1 a),但是具有过短寿命(若干天或若干周,取决于地点与分解的产物)的替代物又可能导致空气品质降级,包括产生城市中的烟雾。分解产物的影响与安全性可能也是需要关注的问题。

1.4 第四代制冷剂(以全球变暖效应为选择标准) 正如由 Brohan 等人在图 3 中所描述的那样,对臭氧耗

1995 2007年期间,最热年出现了12次,只有1996年是不热的, 2007年是第8位最热年,1998年是具有0.58℃异常温度的最热年

图 3 全球温度的变化情况[13-14]

损的非常成功的应对与气候变化的恶化情况形成了极鲜明 的对比[14-15]。关于全球气候变暖的一些新发现和政策争 辩已成为家常便饭,尤其在最近几个月里。气候变化政府 间委员会(IPCC)第 4 次评估报告(AR4)反映了最近科学 界的共识,即:"气候系统变暖是无可争辩的事实,如同观测 结果所表明的,全球平均空气与海洋温度上升,冰雪大范围 融化,全球平均海平面上升等现象都已很明显"[16]。这一 评估报告的结论是:"自 20 世纪中期以来, 所观测到的全球 平均温度增加的主要原因极可能是由于所观测到的人为的 温室气体浓度的增加";"人类的影响现已显著扩大到气候 的其他方面,包括海洋变暖,大陆平均温度上升,气温的极 端事件,及风的型式"[16]。对树木年轮、珊瑚礁、冰雪晶核及 其他一些间接指标的分析证明,上世纪90年代是最近1000 年中最暖的10年,20世纪是这1000年中最暖的世纪。

依照联合国气候变化框架公约(UNFCCC),《京都议定 书》基于二氧化碳,甲烷,氧化亚氮,HFC,PFC,SF。的计算当 量值,对温室气体(GHG)制定了捆绑式指标[17]。此议定书 并不试图解决《蒙特利尔议定书》所涉及的 ODS 问题,虽然 某些 ODS 也是一些作用很强的 GHG。各国有关贯彻京都 议定书的法律与管制条例互有差别,但一般都禁止 HFC 与 PFC制冷剂的可避免的排放;在某些国家中,还对这些制冷 剂的使用进行管制与征税。最近在地区、国家、州及城市级 别上采取或推荐采取了更为严格的措施。出于对全球变暖 的重点关注,这些约束正在迫使制冷剂向着第四代转变。

欧洲议会对新型号汽车空调器禁止使用 100 年累计 GWP 值超过 150 的氟化学品制冷剂(F-气体)的指令从 2011年起生效,对于所有新的汽车规定了在2017年起开 始生效的时间[18]。所采纳的管制条例还要求定期检查采 用HFC的固定空调系统[19]。虽然欧洲议会否决了要在 2006 年禁止将 HFC 用作气溶胶喷雾剂、在 2009 年禁止用 作发泡剂、在2010年禁止用作固定空调机与制冷系统中的 制冷剂的建议,而最后一项有争议性的表决是 262 票对 368票,超过40%为赞成票。这种明显的支持程度会引起 今后重新考虑,特别是在有了最近的有关气候变化越来越 快和更严重事端的科学发现情况下。今后将会提出重新审 议。这些措施的直接影响是,作为一种制冷剂,禁止了 R134a 在其最大的排放性应用场合即在汽车空调器中的使

用。所采用的 GWP 值的限制旨在允许考虑使用低 GWP 值的 HFC(特别是 R152a,即使它是可燃的)。F-气体指令 还同意了一些更严格的国家管制条例,其中有些国家管制 条例禁止在一些大系统中使用 HFC,明确禁止在冷水机组 中使用 HFC,或者按照 HFC 制冷剂的用量开征消费税。 欧盟正大力推动采取更严格的控制温室气体排放的措施。 在美国,许多州与城市对 GHG 的排放也已经提出了限制, 或是个别的或是地域性的,虽然对于各种 HFC 的具体影 响还不确定。常为人先而且人口最多的加利福尼亚州在 2006年末通过了新的立法,对发电厂、冶炼厂与制造厂规 定了全美第一个排放限额,其目标是到2020年要把温室气 体排放削减到 1990 年的水平。该法律要求州政府的管理 机构确定一些实际要求。加州的变化可能是要对在新车辆 系统中使用低 GWP 制冷剂规定要求,禁止由没有资质的 技术人员对泄漏系统充液。其他一些措施可能还要限制在 一些商业制冷系统中使用 HFC。如果加州确实要管制 HFC 的使用与排放,至少有 8 个其他州是倾向于跟而效仿 的。许多东北部与中大西洋的州政府在2007年联合签订 协定,对发电厂排放物制定最高限值,并鼓励在一些电力公 司间进行排放配额的贸易。5个州的州长在2007年就具 有类似目标的西部地区气候行动计划达成了一致。

2 对下一代制冷剂的考虑

一些制冷剂生产厂商以宣告新的制冷剂研发成功来迅 速回答 F-气体指令[18]。至少有三家制冷剂跨国制造公司 报道了能研发拥有专利的、能满足 GWP 限值 150 的创新 制冷剂[20-23]。由于考虑到汽车制冷剂销售有非常大的市 场价值,可以有把握地假设,一些制冷剂公司正在探索解决 方案,特别是当现在某些最大的公司已公开宣布有望达到 F-气体指令的要求。通过与一些代表性公司的联系、接触 也确认了这种期望。

这些公司已经散发了一些初步的环保、安全、性能数 据,但是鉴于竞争的理由,和由于最终的配方还在仔细琢磨 之中,以及由于还没有完整的数据,所以这些公司限制完全 公开这种制冷剂的组成。某些潜在专利(the underlying patents)只对所考虑的物质,或者是单个的,或者是混合物 的成分提供了看法[24-25]。按照笔者对下一代制冷剂候选 组分的理解,在表1中详细介绍了这种信息。这些专利暗

表 1 低 GWP 值制冷剂的候选物与混合制冷剂的成分	
	需要考虑的事项
"天然制冷剂"(NH ₃ ,CO ₂ ,HC,H ₂ O,空气)	效率,对 NH ₃ 与 HC 来说还有可燃性问题
低 GWP 值的 HFC(R32,R152a,R161,······)	可燃性,而大多数燃烧抑制剂又具有高的 GWP 值
HFE	至今依然令人失望?
HC, HE(R290, R600, RE170,)	可燃性
不饱和化合物(烯烃)(R1234yf,)	短的大气寿命,所以 GWP 也低,但其可燃性、毒性、相容性还需考虑?
HFIC,FIC(R3111(CH ₂ FI),R1311(CF ₃ I),)	价格高,虽然 <i>ODP</i> >0,但在蒙特利尔议定书(MP)中未被包括进去,有些是有 毒的;相容性要考虑?
氟化乙醇(—OII),氟化酮(—(C—O)—)	要考虑效率、可燃性、毒性、相容性?
其他	??? 一不是理想制冷剂

示着某些候选物与用途还可能需要有相容的添加剂(如消除泡沫添加剂或金属表面减活化剂),稳定剂(如氧化抑制剂),润滑油增溶剂,或其他的添加剂。

有些(即使不是全部)制造商期望,这些被确定为能满足F-气体指令要求的解决方案或方案的变种将会有更广泛的应用潜力。文献[20,24-25]专门对用于固定空调与制冷系统中的制冷剂、发泡剂和灭火剂鉴别了广泛应用的可能性。觉得响应蒙特利尔议定书容易——在安全、耐久与高效率上看似没有折衷可言——掩盖开发第三代制冷剂与相应润滑油,优化与建设生产制造厂,修改与改进部件(尤其是压缩机)和设备设计,及培训安装、运行与维修技术人员的巨大投资。此外,对于汽车制冷剂的F-气体的 GWP 值限制的迅速与坚定乐观的响应[20-22]——下一代制冷剂的开始——对管制部门发出了这样—种信号,这种信号意味着存在—些制冷剂方案,而这些方案可以达到比在目前蒙特利尔议定书与京都议定书中所包含目标更持续的环保目标。

然而,有四点非常重要,值得考虑。第一,一些生产制 造商以前早已考察过,甚至在有限范围内测试了一些关键 替代制冷剂。一些档案特别记载了用非 ODS 制冷剂替代 CFC 的试验,例如,在家用冰箱中研发使用 R134a,是在蒙 特利尔议定书制定前的10多年的事[26]。除非是作为混合 制冷剂的某种成分(如 R500 中的 R152a 和 R503 中的 R23),制冷界在 ODS 淘汰之前基于润滑油考虑,是避免采 用 HFC 制冷剂的,尽管早在 1928 年已经把它们看作候选 物。第二,替代制冷剂一般比原先选择的制冷剂的效率要 更低些,只有少数例外。采用替代制冷剂的机器,其效率的 提高主要靠改进设备设计而不是靠较新工质的性能。简单 地推论,如果对于采用原有制冷剂的制冷机组进行更好优 化,在多数情况下,就可能会给出甚至更高的效率,而一些 替代制冷剂却减少了产品进一步进行效率改进的空间[27]。 第三,目前的候选制冷剂没有一种是理想的,未来要想发现 理想制冷剂也是极不可能的[27]。一些强加约束迫使在不 同的环境、安全、性能、成本与其他一些目标之间进行新的 折衷,这种折衷扩大不了可获得的有限方案。第四,对于各 个环境问题的相继关注,基于单一环境问题的一些次要、甚 至可忽略不计的影响来平衡总体解决方案,具有排除掉一 些重要,甚或关键方案的风险[28]。

3 不同环境目标之间的平衡

一些新的制冷剂在相互冲突的环境指标之间和环境目标与安全性或相容性之间的平衡上提出了一些令人感兴趣的问题。ODS 的淘汰减少了探究气候变化的方案,或者是由于直接的因果关系,或者是由于像能源消耗所引起的排放等间接因果关系。R13I1(CF₈I,一种碘的氟化烃,FIC)与R123(一种 HCFC 制冷剂)就是环保目标之间相互冲突的两个实例,R13II 可作为低 GWP 值汽车空调制冷剂的一种潜在成分[24],R123 可作为离心式冷水机组的制冷

剂[29]。这两种制冷剂都具有较短的大气寿命,非常低的 GWP 值,低的急性吸入毒性和不可燃性能;这两种制冷剂 都是有效的火灾抑制剂。然而,它们都具有非常低的、不为 零的的 ODP 值, R13I1 为 0.011~0.018(模拟值), 随其排 放的纬度与高度而不同,而 R123 的半经验 ODP 值为 0.02 (模拟值为 0.012)[12,30]。为了抑制氟化烯烃(不饱和烯烃) 的可燃性,同时使其GWP值最小化,R13I1可以与氟化烯 烃结合,作为一种潜在的混合制冷剂的成分。尽管是一种 ODS,虽然具有极低的 ODP,但由于它在 1992 年还没有商 业化使用,故蒙特利尔议定书并不管制 R13I1,最近才将其 添加到了该议定书中。对于冷水机组来说,R123 是除了 R11 与 R141b 之外效率最高的制冷剂[30], 而 R11 与 R141b 都具有显著较高的 ODP 与较高的 GWP 值[12,30]。R123 作 为一种 HCFC 在欧洲早已被淘汰,除非重新审议淘汰时间 表,在非第5条款国家到2020年和在第5条款国家到2030 年,在新生产冷水机组中也要进行类似淘汰,这些关于淘汰 的强制规定都是要解决所有 HCFC 问题而不是仅针对 R123。最近的[30] 和以前的一些方案的国际评估指出, R123 由于其 ODP 很低、GWP 很低、极短的大气寿命,以 及在目前设计的冷水机组中排放量极低和高效率,故对环 境的全面影响很小。最近的另一项同时旨在指导蒙特利尔 议定书修订的国际评估建议,重新审议早先有关淘汰所有 ODS 的提案。这意味着"在这次评估之后通过议定书的一 项调整案可以允许被证明对臭氧层无害的一些特殊化学品 生产与消费"[31]。就目前而言,蒙特利尔议定书允许在非 第5条款(发达)国家直到2030年,在第5条款国家直到 2040 年有限制地生产 R123 和用于维修的其他 HCFC。该 议定书对于现有设备继续使用的、库存的或回收的制冷剂 未加任何限制。这些实例说明了为解决臭氧耗损与气候变 化问题在环境目标上存在有一些明显的冲突。

比较图 2 与图 3,和所要探究的一些方案,以及平流层 臭氧耗损与气候变化的因果关系,表明要解决这两方面的 问题都很困难,而缓解全球变暖更为紧迫。这种比较向简 单生硬地摒弃少数几种方案提出了挑战,这些方案对于平 流层臭氧的影响很小、或甚至看不出来,而对于减轻全球气 候变化的影响却很显著、或甚至很强、很有潜在影响。两个 环境问题都很重要,但缺乏能同时解决这两个问题的理想 候选物,在不降低安全性的条件下,需要在这些目标之间进 行平衡。虽然带有推测成分,假如当时就有现在这种对于 全球变暖严重性的认识和应对的局限性的认知,那么蒙特 利尔议定书的制定者们就很可能按类别而不是个别确定, 更小心地采取消除化学品的行动。然而,议定书为未来留 下了可根据科学评估作出调整的余地,尽管在政治上是困 难的,但却提供了一种选择方案,以便能着手处理对这类虽 是少数但意义重大的案例进行修订。

其他一些问题也起因于在环境问题上的折衷。一些生

产制造商所选择的目前最广泛被用作制冷剂的 R22 的主 要替代物是 R410A(一种 R32 与 R125 的混合制冷剂)。 $R410\Lambda$ 实际上虽然 ODP 为零,但是,其 GWP 比 R22 提高 了 16%(100 年的累积值从 1810 增加到 2100),把可达到 的能效降低了6%,所以,根据热力学循环分析,对于采用 单级压缩的常规空调器来说,增加了与能源消耗有关的温 室气体排放[32]。其他一些因素,如这种混合物具有较高热 传递性能和这种设备的优化程度,虽然能够使其在标准标 定条件下与最低的可允许性能水平相匹配或者甚至使其效 率有了一些提高,但并不是可以达到的最高效率。虽然所 有的制冷剂在理论上,经过对循环的充分修改与优化,都可 以达到相类似的效率[33-34],但是所附加的每一种复杂因素 都提高了成本、制冷剂充注量、泄漏的可能和热力学的不可 逆性,而降低了可靠性[27]。因此,那些具有高的简单循环 效率和较低环境危害系统风险的制冷剂拥有天赋的优点, 能以较低成本改善性能。

此外,当周围空气温度渐渐升高、接近 R125 的临界温度时,R410A的效率比 R22 降低得更迅速,所以,对于相同标定容量与季节效率的风冷系统来说,R410A 所需要的尖峰电功率是比较高的。在那些发电或输电后备能力不足的地方,包括在一些发展中国家的这些地方,这是特别严峻的问题,对于这些国家来说,要提供充足的和买得起的电力来发展,已经是一个难题。此缺点还削弱了采用可持续的发电技术来替代常规发电的能力,以便减少附带有温室气体排放的矿物燃料的燃烧与对其的依赖,因为太阳能、风能及类似的发电技术往往需要有较高的初投资费用。与R410A 相比,虽然 R32 与某些非 R32 可以避免在较高周围温度时性能急剧下降,并且同时提供了较高的季节效率和低很多的 GWP 值[32]。然而,它们却是一些边缘性的可燃物。

氟化烯烃,如那些正在考虑作为低 GWP 汽车制冷剂 的物质,一般是要比只具有单个碳-碳键的化合物具有更强 的化学反应活性。这种化学反应活性导致了较短的大气寿 命、较低的 ODP(对于那些含有氯、溴、或碘的化合物)和较 低的 GWP,但又降低了稳定性和增加了毒性。同样,具有 最低 GWP 的化学品往往在地面附近,通常特别是在释放 地点的附近就分解了。某些可能是雾的起源,而另一些可 以分解或起着直接的或催化的作用,生成比原来化学品的 GWP 更高的其他化学品,因此呈现出比直接 GWP 更高的 间接 GWP。大多数小的碳氢化合物链烷 (hydrocarbon alkanes)与烯烃(olefins(alkenes))的间接 GWP 超过它们 的直接GWP,但是温度、纬度、高度的影响,乃至其他大气 污染物的存在使得要确定它们的净 GWP 变得复杂了。这 样复杂的问题的解决超过了本文所要关注的范围。提出此 问题仅仅为了说明,在一些环境目标之间复杂的相互作用 与不可避免的折衷甚至超出了臭氧耗损与全球变暖的考虑 范围,或者说超出了与制冷剂有关系的("直接影响")和与能耗有关系的(有时候被看作为"间接影响")考虑范围,是和考虑间接(GWP)排放影响不一样的。

4 最近的发展和对"天然制冷剂"被更广泛接受的展望

影响未来制冷剂的技术、市场与政策正在迅速地发生变化。最近有关毒性的结论至少结束了用三种制冷剂混合物(被鉴定为 AC-1,DP-1 和 JDH)来替代用于汽车空调中的 R134a 的进一步考虑。同样,基于 R13II 的稳定性和有关它的 ODP 可接受性上的不确定性,达不到可接受标准,所以取消了对 R1234yf/R13II 混合物(即 fluid H)的初步考虑。这四种混合制冷剂在 2006 年和 2007 年初,在车辆试验期间,普遍被看成非常有希望的"全球替代制冷剂"(GAR)的候选物,但到了 2007 年后期被放弃了[35-36]。

汽车行业现在正在考虑用三种主要候选物来替代汽车空调器中的 R134a,即:采用直接膨胀系统的二氧化碳与 R1234yf 和采用间接("二次环路")系统的 R152a。尽管二氧化碳在某些报道与车辆试验中被称为"天然制冷剂"和有令人惊喜的发现^[37],但存在着系统复杂和质量大的问题,尤其在一些小型车辆中与炎热气候下,造成了对总排放的影响,包括所增加的燃料消耗的亏损。还有,若干生产厂商正计划用引入二氧化碳来达到欧盟的 F-气体淘汰时间表的要求和吹捧它的优点,特别是现在正在考虑采用热泵方式,作为在严寒气候条件下车辆供暖的方案来改善汽车发动机的效率。

作为一种单一化合物的制冷剂, R1234yf 提供了与 R134a 热力学性能相类似的性能,因此使汽车空调的设备 变动最小,并且也满足了稳定性与相容性的标准[35]。它还 具有 100 年累积值为 4 这样格外低的 GWP 值[38]。 R1234yf 的慢性(长期、重复暴露)和生殖毒性试验 (reproductive toxicity testing)还没有完成,但急性(短期、 单次暴露)和次慢性(中间的、重复暴露)试验的结果是良好 的[35]。它的生产需要有严格的过程控制,可能还需要净化 工艺,以防止毒性污染物的掺夹。与 R1225 的异构体的情 况类似,对 R1234yf 毒性的进一步研究可能会显示出一些 不可预料的、不良的结果,因为不饱和化合物通常会展示出 不可接受的毒性。R1234yf 的成本很可能要比 R134a 高很 多,尤其在初期。尽管如此,至少有两家主要的化学品制造 厂商[23]已经把他们的研究(联合研究)焦点重新对准直接 膨胀系统中的 R1234yf^[35],而一些主要汽车制造商现在也 正在评价这种制冷剂。

大多数制造商还结束了 R152a 在一些直接膨胀系统中作为替代物的研究,因为预测这种制冷剂具有有限的可燃性,尽管当这种制冷剂泄漏到发动机车厢内时难于点燃,但结论还是它"不适合用于不按可燃制冷剂设计的车辆"^[39]。由于已确认了它在用于小型车辆与温暖气候下的优点,对间接系统的评估仍在继续进行^[40-41]。

许多研究正在评价二氧化碳与其他"天然制冷剂"在固定(设备)系统中的应用。二氧化碳在工业制冷的复叠式系统的低压段中的使用目前已很普遍,虽然它主要是取代了氨的这种应用。二氧化碳在热泵热水加热器(HPWH)中的应用正在逐渐增多,尤其在日本,因为日本的生活热水加热能耗占住宅用能量的大约30%。自从2001年开始商品化生产以来,EcoCute HPWH的累计发货量在2007年超过了100万台[42],目前全年安装量超过50万台,日本工业界预测到2010年累计销售量可达520万台[43]。EcoCute的最初成功,某些原因取决于日本政府与公用事业公司自2002年以来补贴了470亿日元,大约每台补贴了47000日元(约合290欧元或420美元)[44-45]。此种成本与在其他国家中的成本相比较也是很高的,要在日本之外国家中较广泛应用可能就需要进一步降低成本[45]。

二氧化碳在商业制冷中作为制冷剂与在一些间接("二次环路")系统中作为 HTF(热传递工质)的利用也在增加,尤其是在欧洲^[30]。后一种应用从两方面促进了制冷剂充注量的显著减少,并且为在零售展示柜与超市的准备与贮藏区中使用氨、氨的混合制冷剂(如:已商业化生产的RE170,二甲基乙醚)、碳氢化合物、R152a及其他可燃制冷剂展现了未来的前景^[30]。

碳氢化合物,特别是 R600a(异丁烷)和其他异丁烷的 混合制冷剂,先后取代了 R12 和 R134a,目前已在欧洲家用 冰箱中占有主导地位,但在北美,尤其在美国未被使用[30]。 其原因虽然被广泛认为是出于安全考虑,但对于冰箱来说 并非如此,因为其制冷剂充注量很少(一般不到120g,1/4 磅)。一些主要家用电器制造商是在全球经营的,他们不会 认为碳氢化合物在欧洲是安全的,而到了美国则是不安全 的。在美国,一般的冰箱尺寸是要比欧洲大些,但与日本和 韩国的冰箱尺寸是相当的,而在日本与韩国,异丁烷在其冰 箱与售货机中的使用正在增加。这种差别取决于美国的一 些民事侵权行为法律,这些法律导致一些制造商害怕遭到 在明知有非燃替代物可用的情况下造成民用电器火灾的指 控。这种情况与采用天然气与其他碳氢化合物来做饭和烧 热水是很不同的,因为后者采用可燃物质是不可避免的,已 被普遍接受。可燃性与爆炸危险通常阻止了碳氢化合物在 大容量设备中的使用,除了在一些化学工艺过程中,这些工 艺过程本身存在着更大的危险并且已有防护措施。

氮是一种最古老的制冷剂,在工业制冷系统,尤其是在食品与饮料加工中,氮仍旧是适用的制冷剂,因为这些工艺加工过程通常需要大的热容量和系统变更的灵活性,以及储藏量。在欧洲,尤其在北欧重新恢复了对氦的兴趣。它的可燃性与对皮肤有较小程度的腐蚀性问题限制了它在其他地方被广泛接受,尤其在较温暖气候下,在靠近居住密度大的场所一般采用了一些较大容量的冷水机组。

在一些大型吸收式冷水机组与冷水机组加热器中,水

仍然是主要的制冷剂,这种冷水机组主要采用溴化锂作为吸收剂。尽管在一些较小的吸收式系统中偶然会用到水,但它的主要作用是和氨一起工作,氨作制冷剂,水作吸收剂。采用水的冷水机组尤其是深的矿井冷却正在进一步研究,对于这些场合,水泵的输送负担与地下制冷剂的泄漏,不管是可燃的还是不可燃的,其敏感性是更突出了。在一些使用离心压缩机的大冷量装置中——般为轴流设计—需要深度真空运行和采用多级压缩机,对于蒸气机械压缩式冷水机组来说,水作为制冷剂受到了限制,虽然还在继续关注对于一些创新压缩机设计的研究。

5 一些政策与管制条例

政策与管制条例的环境变化对未来制冷剂的选择会带来重大影响,正如上面讨论所说明的那样,为了满足欧盟对于低 GWP 值汽车空调制冷剂的要求,人们立即把注意的焦点集中到一些新型制冷剂的研发上。也正如上面所讨论的那样,他们正在重新审议过去失败了的有关固定空调与制冷系统的欧盟指令,若干提案具有引人注目的影响。同样,国际社会在 2007 年末通过了"巴厘岛行动计划"(又称"巴厘岛路线图"),为减轻气候变化同意在 2009 年谈判在京都议定书目前的 2008—2012 年承诺期结束之后采取更积极的要求[46]。虽然尚未被采纳,但巴厘岛谈判探讨了到2020 年温室气体减排 25%~40%的中期承诺,到 2050 年要减排 50%(某些提案减排高达 80%)的承诺。这种目标和 2008—2012 年集体承诺相对于 1990 年平均减排 5%相比,显得是雄心勃勃,况且那时这种目标只适用于一些发达国家,而且有的国家还可能达不到此目标。

虽然目前京都议定书中是把 HFC 作为 6 种 GHG 与 GHG 组中的一种来处理的,但一般的理解都认为 HFC 的 总体影响是较小的,尤其是与用电的空调与制冷系统所排 放的 GHG 相比较。现在情况不同了。虽然目前 HFC 与 PFC 合在一起的排放量占美国 2006 年 GHG 排放量的 2% 不到[47],但是,随着 R22 的淘汰,和到了 2010 年在一些新 空调中主要用 R410A 来替代,这种排放比例将会增加,尤 其考虑到(售后的)现场维修需要量已经历史性地超过了在 工厂充灌的需要量。假设 HFC 的排放量增加到两倍或三 倍,即使消除了由于 R22 生产时难以捕捉的 R23 的排放, 并且其他 GHG 排放量减少 50%, 那么 HFC 的排放量比例 也将增加到7%~10%。虽然由效率所引起的与能源有关 的影响无疑依然占据支配地位,但是归因于制冷剂释放的 直接影响份额在增加。根据应用部门所报告的在短期、中 期和长期库存时段的配额,一家为生产厂提供综合统计数 据的氟化学品制造商协会估计,自1990年以来,已经向大 气中释放的 R134a 的数量占其累计生产量的 56%以 上[48]。在 2004 年所生产的 17.4 万 t R134a 中, 所估计的 释放量超过了 72%[48],相当于释放了 1.8 亿 t 二氧化碳, 所以指出需要一些低 GWP 方案,同时还要改进系统效率。

《美国气候安全法》(America's Climate Security Act, ACSA)是一项在美国参议院尚未表决的法案,为了减少 2012—2050年间的温室气体排放,提出了最高限值交易计 划[49]。ACSA 把 HFC 与京都议定书规定的其他温室气体 分开处理,对其消费量(生产量+进口量-出口量-有资格 的销毁量)规定了最高限值,即在预期的2037年降至9000 万 t(二氧化碳当量)的基础上将 2010 年的消费量定为 3 亿 t(二氧化碳当量)。70%的减少量相对于没有最高限额约 東所计划的 HFC 的生产量显然是保守的。ACSA 还采取 激励手段,鼓励消费者购买含有 GWP 值低于 150(与欧盟 汽车指令所采用的限值相同)的制冷剂,以及效率比最小值 高出 30%的 HVACR 产品。此法案还要求对住宅空调器 与其他产品建立区域标准,以使某些地方能推行更严格的 最低性能标准,并允许一些州与市政当局要求采用比联邦 最低能效标准更严格的标准。虽然大部分提案根本没有制 定成法律,或者没有提出修正案,但是只要这些要求中某些 要求制定成了法律就能引人注目地影响美国的制冷剂选 择,从而为其他国家建立一个新的基准。

6 结论

受一些科学发现、管制要求与市场压力的推动,第四代 制冷剂即将出现,几乎可以肯定在2010年前它们就会开始 投入应用。支配新一代制冷剂选择的标准将把低的 GWP 要求——起始为 150 或更小(按 100 年累计计算)——添加到 原有的关于适用性、安全性、与材料相容性的要求中。鉴于 对可能引起新的环境问题的关注和对氟化学品满足新的 GWP 限值的潜在能力,短的(但又不能太短)大气寿命也 应作为一个选择标准。最重要的是新一代制冷剂必须提供 高的效率,或者说为了解决低 GWP 所做的变动应当降低 而不是反过来使净 GHG 排放量增加。虽然目前管制条例 的压力是要解决汽车空调器,但是几乎可以肯定,未来将会 扩大到其他应用领域。许多目前被视为新的替代物的制冷 剂,包括许多 HFC,可能很快被淘汰。鉴于缺乏可行的替 代方案,未来制冷剂的选择要确保对所有环境问题作整体 考虑和综合评估,而不是一个个分开处理,由于那样做就会 因个别问题上的次要的或甚至觉察不到的影响,而丧失一 些整体上优良的方案的风险。

参考文献:

- [1] Evans O. The abortion of a young steam engineer's guide [G]. Philadelphia, 1805
- [2] Perkins J. Apparatus for producing ice and cooling fluids: UK, Patent 6662[P], 1834
- [3] Carrier W H, Waterfill R W. Comparison of thermodynamic characteristics of various refrigerating fluids [J]. Refrigerating Engineering, 1924
- [4] Ingels M. Willis Haviland Carrier—father of air conditioning[G]. Carrier Corporation, 1952
- [5] Midgley Jr T. From the periodic table to production [J].

- Industrial and Engineering Chemistry, 1937, 29 (2): 239-244
- [6] Midgley Jr T, Henne A L. Organic fluorides as refrigerants
 [J]. Journal of Industrial and Engineering Chemistry, 1930, 22, 542-545
- [7] Downing R C. History of the organic fluorine industry M/ Kirk-Othmer Encyclopedia of Chemical Technology, second ed. New York: John Wiley and Sons, Incorporated, 1966;704-707
- [8] Downing R C. Development of chlorofluoro-carbon refrigerants
 [G]// ASHRAE Trans, 1984,90 (2B): 481–491
- [9] UNEP. Decisions adopted by the nineteenth meeting of the parties to the Montreal Protocol on substances that deplete the ozone layer[R]. Nairobi; United Nations Environment Programme (UNEP) Ozone Secretariat, 2007(a)
- [10] Montreal Protocol on substances that deplete the ozone layer (1987 with subsequent amendments)[G]. New York, NY, USA,1987
- [11] Calm J M. Emissions and environmental impacts from air conditioning and refrigeration systems [J]. International Journal of Refrigeration, 2002, 25 (3):293-305
- [12] World Meteorological Organization (WMO), Scientific assessment of ozone depletion[R], 2006
- [13] Newman P A. Atmospheric chemistry and dynamic branch; private communication [G]. Greenbelt; Goddard Space Flight Center, National Aeronautics and Space Administration (NASA), 2007
- [14] Brohan P, Kennedy J J, Harris I, et al. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850 [J]. Journal of Geophysical Research, 2006;111
- [15] Rayner N A, Brohan P, Parker DE, et al. Improved analyses of changes and uncertainties in marine temperature measured in situ since the mid-nineteenth century; the HadSST2 dataset [J]. Journal of Climate, 2006,19: 446-469
- [16] Intergovernmental Panel on Climate Change (IPCC), Climate change 2007; the physical science basis-summary for policymakers [R]. Geneva; World Meteorological Organization (WMO) and United Nations Environment Programme (UNEP), 2007
- [17] Kyoto Protocol to the United Nations Framework Convention on climate change[G]. New York, 1997
- [18] Horrocks P. EU F-gases regulation and MAC directive, ECCP-1 review [G] // European Commission Environment Directorate, 2006
- [19] Environment Committee, Regulation (EC) No 842; 2006 of the European parliament and of the council of 17 May 2006 on certain fluorinated greenhouse gaser[J]. Official Journal of the European Union, 2006(161);1-8
- [20] DuPont Fluorochemicals, DuPont fluorochemicals develops next generation refrigerants new sustainable alternatives would offer practical solutions [M]. Wilmington: Press

- Release, 2006
- [21] Honeywell. Honeywell's developmental refrigerant meets global warming regulation technology targets future auto applications[M]. Morristown: Press Release, 2006
- [22] INEOS Fluor. New refrigerant from INEOS fluor developed to meet long term needs of the automotive air-conditioning sector[M]. Runcorn: Press Release, 2007
- [23] DuPont Fluorochemicals, Honeywell. DuPont, Honeywell announce refrigerants global joint development agreement [M]. Wilmington; Press Release, 2007
- [24] Singh R R, Pham II T, Wilson D P, et al. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane; U S, patent 6,969,701 [P]. 2005-11-29
- [25] Minor B H, Rao V N M, Bivens D B, et al. Compositions comprising a fluoroolefin: WIPO patent application WO 2006/094303 A2[P]. 2006-09-06
- [26] DuPont Fluorochemicals. Disassembly and inspection of compressor in laboratory refrigerator charged with R-134a, report NIST-13[R], 1988
- [27] Calm J M, Didion D A. Trade-offs in refrigerant selectionspast, present, and future [J]. International Journal of Refrigeration, 1998,21 (4): 308-321
- [28] Wuebbles D J, Calm J M. An environmental rationale for retention of endangered chemicals [J]. Science, 1997, 278 (5340):1090-1091
- [29] Calm J M. Environmental and performance studies of R 123 as a chiller refrigerant-resulting recommendations for environmental protection [C] // Proceedings of the 11th International Refrigeration and Air-Conditioning Conference, Purdue University, 2006
- [30] United Nations Environment Programme (UNEP). 2006
 Report of the refrigeration, air conditioning and heat pumps
 technical options committee—2006 Assessment [R].
 Nairobi: UNEP Ozone Secretariat, 2007(b)
- [31] United Nations Environment Programme (UNEP). 2006
 Assessment report of the technology and economic assessment panel [R]. Nairobi: UNEP Ozone Secretariat, 2007(c)
- [32] Calm J M, Domanski P A, R 22 replacement status[J]. ASIIRAE Journal, 2004,46 (8): 29-39
- [33] Domanski P A, Didion D A, Doyle J P. Evaluation of suction line-liquid line heat exchange in the refrigeration cycle[J].

 International Journal of Refrigeration, 1994, 17 (7): 487-493
- [34] Domanski P A, Minimizing throttling losses in the refrigeration cycle [C] // Proceedings of the 19th International Congress of Refrigeration, 1995, IV(b), 766-772
- [35] Minor B H, Spatz M W. HFO-1234yf a low GWP refrigerant for MAC\$-Honeywel /DuPont Joint

- Collaboration[C]// 2nd European Workshop on Mobile Air Conditioning and Auxiliaries (Torino, Italy). Orbassano: Associazione Tecnica dell'Automobile (ATA), 2007
- [36] Spatz M W, Minor B H. Update on a low GWP refrigerant Fluid H, DP-1, JDH[C]//SAE 8th Alternate Refrigerant Systems Symposium, Scottsdale, Warrendale: SAE International, 2007
- [37] Hafner A, Neksa P. Global environmental and economic benefits of introducing R744 mobile air conditioning [C] // Proceedings of the 22nd International Congress of Refrigeration, Beijing, 2007
- [38] Nielsen O J, Javadi M S, Sulbaek A M P, et al. Atmospheric chemistry of CF3CF, CH2; kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and O3[G]//Chemical Physics Letters 439, 2007; 18-22
- [39] US Environmental Protection Agency (EPA) Climate Protection Partnerships. Secondary loop vehicle A/C systems: report of the 14 15 August 2007 U S EPA workshop on IIFC-152a[R]. Washington, 2007
- [40] Baker J A, Ghodbane M, Rugh J, et al. Alternative refrigerant demonstration vehicles[C]//SAE 8th Alternate, 2007
- [41] Montfort R, Malvicino C, Craig T. Secondary loop system for small cars[C]// 2nd European Workshop on Mobile Air Conditioning and Auxiliaries (Torino, Italy), 2007
- [42] EcoCute, EcoCute tops one million units[G] // IEA Heat Pump Centre Newsletter, 2007,25 (3): 13
- [43] Hashimoto K. Technology and market development of CO₂ heat pump water heaters (EcoCute) in Japan[G] // IEA Heat Pump Centre Newsletter, 2006, 24 (3):12-16
- [44] Horiya F. Heat pumps break through for dramatic GHG reduction [G] // Presentation at Deploying Demand Side Energy Technologies Workshop, International Energy Agency, 2007;21
- [45] Zogg R, Roth K, Radermacher R, et al. CO₂ heat pump water heaters[J]. ASHRAE Journal, 2007,49(11):52-54
- [46] UNFCCC Press Release-UN breakthrough on climate change reached in Bali [R]. Bonn: United Nations Framework Convention on Climate Change (UNFCC) Secretariat, 2007
- [47] Energy Information Administration (EIA). Emissions of greenhouse gases in the United States 2006; Report DOE/ EIA-0573[R], 2007
- [48] AFEAS, Production and atmospheric release of R134a, production and sales of fluorocarbons [G]. Washington: Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), 2007
- [49] America's climate security act of 2007 (ACSA)[C]// U S
 Senate Bill S 2191 (110th Congress, 1st Session).
 Washington, 2007